
Introduction: Unraveling the genotype-phenotype map (GPM) of complex traits has been the 

goal of quantitative geneticists for decades. Thus far, genome-wide association studies (GWAS) 

have predominately been utilized to dissect the genetic basis of complex traits. Epistasis and 

pleiotropy are typically unaccounted for in GWAS and as such prevent adequately describing the 

GPM1. Therefore, more advanced tools that provide causal and mechanistic insight into the GPM 

are needed to model epistasis and pleiotropy. Although GWAS of simply inherited phenotypes 

have provided us with valuable information, we must integrate GWAS with transcriptomic and 

metabolomic data, and most importantly the computational modeling of systems biology2,3 to 

better connect genotype to phenotype. 

 Improved knowledge of the GPM is particularly important for nutritional crop 

improvement. Kale (Brassica oleracea var. acephela) is an economically valuable vegetable crop 

with vast genomic resources and high secondary metabolite diversity making it an ideal 

organism to use for this study4,5. In particular, kale contains the anti-carcinogenic glucosinolates 

and nutrients commonly deficient in human diets (provitamin A and other carotenoids, 

flavonoids)6. Kale's global popularity, nutritional importance, and highly variable nutrient profile 

also makes it an ideal candidate for biofortification ―the enhancement of crop nutritional quality 

through plant breeding.  

Objective: To produce a more accurate GPM for the glucosinolate, carotenoid, and flavonoid 

pathways of kale.  

Aim: I will integrate GWAS with mechanistic metabolic models to further unravel the GPM of 

kale nutrient profiles. The results of this experiment will shed light on whether insights into 

metabolic function and its genetic basis can be gained through both statistical associations 

between genotypic and phenotypic variation and the mathematical analysis of mechanistic 

metabolic networks.  

Methods: This project will be conducted with ______________________ as part of a Ph.D. in 

Plant Breeding and Genetics. Genome-wide association: My project will capitalize on ______ 

lab's established methodology and experience with integrating transcriptomic and metabolomic 

data into enhanced GWAS7. I will grow a 300-member kale panel from the USDA germplasm in 

a replicated complete block design at _______________ and use an established genotyping-by-

sequencing (GBS), RNAseq, and high performance liquid chromatography (HPLC) pipeline on 

leaf tissue. These analyses will generate genome-wide SNP, RNAseq, and metabolomic data sets 

for downstream metabolic models and GWAS. I will perform a preliminary GWAS using a 

mixed-linear model to control for population structure and relatedness to generate a list of genes 

associated with nutrient profiles. Generating metabolic models: To complement the GWAS 

results, I will construct, parameterize, and validate metabolic network models for glucosinolate, 

carotenoid, and flavonoid biosynthetic pathways for each member of the diversity panel using 

SloppyCell8. SloppyCell is a Python-based computational systems biology program created by 

Drs._________________________ (both at_____________) capable of fitting model parameters 

to experimental data. These models are created by exploiting “sloppiness” in mechanistic 

models, where system behaviors are robust to variation in certain parameters but highly sensitive 

to other parameter changes. Sloppiness allows for greater emphasis to be placed on prediction 

rather than parameters and allows for the powerful predictive capability of the created metabolic 

network models. Integrating systems biology and quantitative genetic data sets: I will 

integrate data sets with two additional genome-wide associations using the same linear-mixed 

model controlling for population structure and relatedness. I will (1) perform a GWAS using 

parameter ensembles from SloppyCell as the dependent variable to associate parameter variation 



with genetic variation. (2) Perform another GWAS using RNAseq transcript abundance (from 

Cufflinks) as the independent variable to associate transcript abundance with nutrient profiles as 

well as parameter ensembles9. 

Anticipated Results: The preliminary GWAS should produce a list of candidate genes and 

alleles related to different metabolic profiles and nutrient levels. It is expected that some of the 

candidate genes will be similar to GWAS results for provitamin A in maize and glucosinolates in 

Brassica rapa (unpublished data, Bird). The results of the SloppyCell modeling will be a 

metabolic model identifying possible control points in the biosynthetic pathways and sensitive 

parameters that can predict the phenotypic effect of changes in parameter ensembles. The 

parameter ensemble GWAS holds the most promising results. A previous study indicates that a 

GWAS on model parameters could provide more causal variants and create a better foundation 

for prediction methods than a GWAS on the physical phenotype in question10 The transcript 

abundance GWAS will provide loci connected to nutritional variation and parameter ensemble 

variation missed by traditional GWAS due to minimal SNP diversity. These insights should also 

help identify epistatic and pleiotropic genes missed by traditional GWAS. 

Intellectual Merit: This project would be one of the first studies to combine mechanistic 

metabolic models, transcriptomics, and metabolomics in a GWAS and the first ever done on 

plants. It has the potential to improve upon the traditional quantitative genetic methods and 

provide a new methodology for dissecting the GPM. SloppyCell's ability to produce hundreds of 

models from minimal background knowledge of parameters could usher in a new era of systems 

biology integration with plant breeding and genetic studies. Additionally this project will dissect 

the genetic basis of glucosinolates, carotenoids, and flavonoids with unprecedented accuracy and 

resolution, making an accurate and robust genotype-phenotype map closer than ever before. 

Broader Impacts: I plan on building off of Dr. _________ relationship with HarvestPlus, an 

organization focused enhancing the biofortification infrastructure and broadly disseminating 

research to breeders in Africa. I will work with members of HarvestPlus to push for adoption of 

kale as a crop to biofortify based on my results. Kale is commonly eaten in many countries in 

Eastern and Southern Africa including Congo, Tanzania, and Kenya. The identification of 

accessions with greater nutrient density would be beneficial to sustainably fight anemia, 

blindness, and premature deaths caused by micronutrient deficiency. Additionally, I plan to 

partner with the Gates foundation's ________ program at _____________. ______________ 

aims to promote bioengineered crops in appropriate contexts to politicians and the public. The 

program creates a global network to promote the teaching, training, and learning of the 

knowledge and tools of ___________ to local communities. I will help educate and train 

international and local farmers and speak to the general public about bioengineered crops to 

provide a balanced understanding of the benefits and risks of bioengineered crops. The outcome 

of this program is a greater acceptance and use of bioengineering crops that can improve quality 

of life where agriculture is crucial to community and personal livelihood. My passion for science 

communication and genetics, make these programs a natural fit. 
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